Перевод систем – Системы счисления — Перевод чисел и калькулятор
Перевод чисел в различные системы счисления с решением | Онлайн калькулятор
Калькулятор позволяет переводить целые и дробные числа из одной системы счисления в другую. Основание системы счисления не может быть меньше 2 и больше 36 (10 цифр и 26 латинских букв всё-таки). Длина чисел не должна превышать 30 символов. Для ввода дробных чисел используйте символ .
или ,
. Чтобы перевести число из одной системы в другую, введите исходное число в первое поле, основание исходной системы счисления во второе и основание системы счисления, в которую нужно перевести число, в третье поле, после чего нажмите кнопку «Получить запись».
Исходное число записано в 23456789101112131415161718192021222324252627282930313233343536-ой системе счисления.
Хочу получить запись числа в 23456789101112131415161718192021222324252627282930313233343536-ой системе счисления.
Получить запись
=
Выполнено переводов: 3169253
Также может быть интересно:
Системы счисления
Системы счисления делятся на два типа: позиционные и не позиционные. Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.
Пример 1. Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:
Число: | 5 | 9 | 2 | 1 |
Позиция: | 3 | 2 | 1 | 0 |
Число 5921 можно записать в следующем виде: 5921
= 5000+900+20+1
= 5·103+9·102+2·101+1·100
. Число 10 является характеристикой, определяющей систему счисления. В качестве степеней взяты значения позиции данного числа.
Пример 2. Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:
Число: | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Позиция: | 3 | 2 | 1 | 0 | -1 | -2 | -3 |
Число 1234.567 можно записать в следующем виде: 1234.567
= 1000+200+30+4+0.5+0.06+0.007
= 1·103+2·102+3·101+4·100+5·10-1+6·10-2+7·10-3
.
Перевод чисел из одной системы счисления в другую
Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.
Перевод чисел из любой системы счисления в десятичную систему счисления
Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:
1. Перевести число 1001101.11012
в десятичную систему счисления.
Решение: 10011.11012
= 1·24+0·23+0·22+1·21+1·20+1·2-1+1·2-2+0·2-3+1·2-4
= 16+2+1+0.5+0.25+0.0625
= 19.812510
Ответ: 10011.11012
= 19.812510
2. Перевести число E8F.2D16
в десятичную систему счисления.
Решение: E8F.2D16
= 14·162+8·161+15·160+2·16-1+13·16-2
= 3584+128+15+0.125+0.05078125
= 3727.1757812510
Ответ: E8F.2D16
= 3727.17578125 10
Перевод чисел из десятичной системы счисления в другую систему счисления
Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.
Перевод целой части числа из десятичной системы счисления в другую систему счисления
Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.
3. Перевести число 27310
в восьмиричную систему счисления.
Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421
Проверка: 4·82+2·81+1·80
= 256+16+1
= 273
= 273
, результат совпал. Значит перевод выполнен правильно.
Ответ: 273
= 4218
Рассмотрим перевод правильных десятичных дробей в различные системы счисления.
Перевод дробной части числа из десятичной системы счисления в другую систему счисления
Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.
4. Перевести число 0.12510
в двоичную систему счисления.
Решение: 0.125·2 = 0.25
(0 — целая часть, которая станет первой цифрой результата), 0.25·2 = 0.5
(0 — вторая цифра результата), 0.5·2 = 1.0
(1 — третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).
Ответ: 0.12510
= 0.0012
programforyou.ru
Перевод из одной системы счисления в другую
Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.
Система счисления — это способ представления числа. Одно и то же число может быть представлено в различных видах. Например, число 200 в привычной нам десятичной системе может иметь вид 11001000 в двоичной системе, 310 в восьмеричной и C8 в шестнадцатеричной.
Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.
Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816
Кратко об основных системах счисления
Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.
Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.
Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.
Шестнадцатеричная система счисления. Наиболее распространена в современных компьютерах. При помощи неё, например, указывают цвет. #FF0000 — красный цвет. Для записи числа используются цифры от 0 до 9 и буквы A,B,C,D,E,F, которые соответственно обозначают числа 10,11,12,13,14,15.
Перевод в десятичную систему счисления
Преобразовать число из любой системы счисления в десятичную можно следующим образом: каждый разряд числа необходимо умножить на Xn, где X — основание исходного числа, n — номер разряда. Затем суммировать полученные значения.
abcx = (a*x2 + b*x1 + c*x0)10
Примеры:5678 = (5*82 + 6*81 + 7*80)10 = 37510
1102 = (1*22 + 1*21 + 0*20)10 = 610
A516 = (10*161 + 5*160)10 = 16510
Перевод из десятичной системы счисления в другие
Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.
Переведем число 37510 в восьмеричную систему:
375 / 8 = 46 (остаток 7)
46 / 8 = 5 (остаток 6)
5 / 8 = 0 (остаток 5)
Записываем остатки и получаем 5678Перевод из двоичной системы в восьмеричную
Способ 1:
Для перевода в восьмеричную систему нужно разбить двоичное число на группы по 3 цифры справа налево. В последней (самой левой) группе вместо недостающих цифр поставить слева нули. Для каждой полученной группы произвести умножение каждого разряда на 2
11012 = (001) (101) = (0*22 + 0*21 + 1*20) (1*22 + 0*21 + 1*20) = (0+0+1) (4+0+1) = (1) (5) = 158
Способ 2:
Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:
Триада | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
---|---|---|---|---|---|---|---|---|
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
101110102 = (010) (111) (010) = 2728
Перевод из двоичной системы в шестнадцатеричную
Способ 1:
Разбиваем число на группы по 4 цифры справа налево. Последнюю (левую) группу дополним при необходимости ведущими нулями. Внутри каждой полученной группы произведем умножение каждой цифры на 2n, где n — номер разряда, и сложим результаты.
110102 = (0001) (1010) = (0*23 + 0*22 + 0*21 + 1*20) (1*23 + 0*22 + 1*21 + 0*20) = (0+0+0+1) (8+0+2+0) = (1) (10) = 1A16
Способ 2:
Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:
Тетрада | 0000 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
1011111002 = (0001) (0111) (1100) = 17C16
Перевод из восьмеричной системы в двоичную
Способ 1:
Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.
Возьмем число 438.
Делим последовательно 4 на 2 и получаем остатки 0,0,1. Записываем их в обратном порядке. Получаем 100.
Делим последовательно 3 на 2 и получаем остатки 1,1. Записываем их в обратном порядке и дополняем ведущими нулями до трех разрядов. Получаем 011.
Записываем вместе и получаем 1000112
Способ 2:
Используем таблицу триад:
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
Триада | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.
3518 = (011) (101) (001) = 0111010012 = 111010012
Перевод из шестнадцатеричной системы в двоичную
Способ 1:
Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.
Способ 2:
Используем таблицу тетрад:
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Тетрада | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.
D816 = (1101) (1000) = 110110002
Перевод из восьмеричной системы в шестнадцатеричную и наоборот
Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.
calcus.ru
Перевод чисел из одной системы счисления в другую онлайн
С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку «Перевести». Теоретическую часть и численные примеры смотрите ниже.
Результат уже получен!Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения
Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:
число | 6 | 3 | 7 | 2 |
позиция | 3 | 2 | 1 | 0 |
Тогда число 6372 можно представить в следующем виде:
6372=6000+300+70+2 =6·103+3·102+7·101+2·100.
Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.
Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:
число | 1 | 2 | 8 | 7 | . | 9 | 2 | 3 |
позиция | 3 | 2 | 1 | 0 | -1 | -2 | -3 |
Тогда число 1287.923 можно представить в виде:
1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·103 +2·102 +8·101+7·100+9·10-1+2·10-2+3·10-3.
В общем случае формулу можно представить в следующем виде:
Цn·sn+Цn-1·sn-1+…+Ц1·s1+Ц0·s0+Д-1·s-1+Д-2·s-2+…+Д-k·s-k
(1)
где Цn-целое число в позиции n, Д-k— дробное число в позиции (-k), s — система счисления.
Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления — из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления — из множества цифр {0,1}, в шестнадцатеричной системе счисления — из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.
В таблице Таб.1 представлены числа в разных системах счисления.
Таблица 1 | |||
---|---|---|---|
Система счисления | |||
10 | 2 | 8 | 16 |
0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 |
3 | 11 | 3 | 3 |
4 | 100 | 4 | 4 |
5 | 101 | 5 | 5 |
6 | 110 | 6 | 6 |
7 | 111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
Перевод чисел из одной системы счисления в другую
Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.
Перевод чисел из любой системы счисления в десятичную систему счисления
С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.
Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:
1·26+0·25+1·24+1·23+1·22 +0·21+1·20+0·2-1+0·2-2+1·2-3 =64+16+8+4+1+1/8=93.125
Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:
Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:
Здесь A -заменен на 10, B — на 11, C— на 12, F — на 15.
Перевод чисел из десятичной системы счисления в другую систему счисления
Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.
Целую часть числа переводится из десятичной СС в другую систему счисления — последовательным делением целой части числа на основание системы счисления (для двоичной СС — на 2, для 8-ичной СС — на 8, для 16-ичной — на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.
Пример 4. Переведем число 159 из десятичной СС в двоичную СС:
159 | 2 | ||||||
158 | 79 | 2 | |||||
1 | 78 | 39 | 2 | ||||
1 | 38 | 19 | 2 | ||||
1 | 18 | 9 | 2 | ||||
1 | 8 | 4 | 2 | ||||
1 | 4 | 2 | 2 | ||||
0 | 2 | 1 | |||||
0 |
Рис. 1
Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:
15910=100111112.
Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.
615 | 8 | ||
608 | 76 | 8 | |
7 | 72 | 9 | 8 |
4 | 8 | 1 | |
1 |
Рис. 2
При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:
61510=11478.
Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.
19673 | 16 | ||
19664 | 1229 | 16 | |
9 | 1216 | 76 | 16 |
13 | 64 | 4 | |
12 |
Рис. 3
Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 — D. Следовательно наше шестнадцатеричное число — это 4CD9.
Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.
Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).
Рассмотрим вышеизложенное на примерах.
Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.
0.214 | ||
x | 2 | |
0 | 0.428 | |
x | 2 | |
0 | 0.856 | |
x | 2 | |
1 | 0.712 | |
x | 2 | |
1 | 0.424 | |
x | 2 | |
0 | 0.848 | |
x | 2 | |
1 | 0.696 | |
x | 2 | |
1 | 0.392 |
Рис. 4
Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011.
Следовательно можно записать:
0.21410=0.00110112.
Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.
0.125 | ||
x | 2 | |
0 | 0.25 | |
x | 2 | |
0 | 0.5 | |
x | 2 | |
1 | 0.0 |
Рис. 5
Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:
0.12510=0.0012.
Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.
0.214 | ||
x | 16 | |
3 | 0.424 | |
x | 16 | |
6 | 0.784 | |
x | 16 | |
12 | 0.544 | |
x | 16 | |
8 | 0.704 | |
x | 16 | |
11 | 0.264 | |
x | 16 | |
4 | 0.224 |
Рис. 6
Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:
0.21410=0.36C8B416.
Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.
0.512 | ||
x | 8 | |
4 | 0.096 | |
x | 8 | |
0 | 0.768 | |
x | 8 | |
6 | 0.144 | |
x | 8 | |
1 | 0.152 | |
x | 8 | |
1 | 0.216 | |
x | 8 | |
1 | 0.728 |
Рис. 7
Получили:
0.51210=0.4061118.
Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:
159.12510=10011111.0012.
Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим:
19673.21410=4CD9.36C8B416.
matworld.ru
Системы счисления. Перевод из одной системы в другую.
1. Порядковый счет в различных системах счисления.
В современной жизни мы используем позиционные системы счисления, то есть системы, в которых число, обозначаемое цифрой, зависит от положения цифры в записи числа. Поэтому в дальнейшем мы будем говорить только о них, опуская термин «позиционные».
Для того чтобы научиться переводить числа из одной системы в другую, поймем, как происходит последовательная запись чисел на примере десятичной системы.
Поскольку у нас десятичная система счисления, мы имеем 10 символов (цифр) для построения чисел. Начинаем порядковый счет: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Цифры закончились. Мы увеличиваем разрядность числа и обнуляем младший разряд: 10. Затем опять увеличиваем младший разряд, пока не закончатся все цифры: 11, 12, 13, 14, 15, 16, 17, 18, 19. Увеличиваем старший разряд на 1 и обнуляем младший: 20. Когда мы используем все цифры для обоих разрядов (получим число 99), опять увеличиваем разрядность числа и обнуляем имеющиеся разряды: 100. И так далее.
Попробуем сделать то же самое в 2-ной, 3-ной и 5-ной системах (введем обозначение для 2-ной системы, для 3-ной и т.д.):
0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 |
3 | 11 | 10 | 3 |
4 | 100 | 11 | 4 |
5 | 101 | 12 | 10 |
6 | 110 | 20 | 11 |
7 | 111 | 21 | 12 |
8 | 1000 | 22 | 13 |
9 | 1001 | 100 | 14 |
10 | 1010 | 101 | 20 |
11 | 1011 | 102 | 21 |
12 | 1100 | 110 | 22 |
13 | 1101 | 111 | 23 |
14 | 1110 | 112 | 24 |
15 | 1111 | 120 | 30 |
Если система счисления имеет основание больше 10, то нам придется вводить дополнительные символы, принято вводить буквы латинского алфавита. Например, для 12-ричной системы кроме десяти цифр нам понадобятся две буквы ( и ):
0 | 0 |
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
8 | 8 |
9 | 9 |
10 | |
11 | |
12 | 10 |
13 | 11 |
14 | 12 |
15 | 13 |
2.Перевод из десятичной системы счисления в любую другую.
Чтобы перевести целое положительное десятичное число в систему счисления с другим основанием, нужно это число разделить на основание. Полученное частное снова разделить на основание, и дальше до тех пор, пока частное не окажется меньше основания. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.
Пример 1. Переведем десятичное число 46 в двоичную систему счисления.
Пример 2. Переведем десятичное число 672 в восьмеричную систему счисления.
Пример 3. Переведем десятичное число 934 в шестнадцатеричную систему счисления.
3. Перевод из любой системы счисления в десятичную.
Для того, чтобы научиться переводить числа из любой другой системы в десятичную, проанализируем привычную нам запись десятичного числа.
Например, десятичное число 325 – это 5 единиц, 2 десятка и 3 сотни, т.е.
Точно так же обстоит дело и в других системах счисления, только умножать будем не на 10, 100 и пр., а на степени основания системы счисления. Для примера возьмем число 1201 в троичной системе счисления. Пронумеруем разряды справа налево начиная с нуля и представим наше число как сумму произведений цифры на тройку в степени разряда числа:
Это и есть десятичная запись нашего числа, т.е.
Пример 4. Переведем в десятичную систему счисления восьмеричное число 511.
Пример 5. Переведем в десятичную систему счисления шестнадцатеричное число 1151.
4. Перевод из двоичной системы в систему с основанием «степень двойки» (4, 8, 16 и т.д.).
Для преобразования двоичного числа в число с основанием «степень двойки» необходимо двоичную последовательность разбить на группы по количеству цифр равному степени справа налево и каждую группу заменить соответствующей цифрой новой системы счисления.
Например, Переведем двоичное 1100001111010110 число в восьмеричную систему. Для этого разобьем его на группы по 3 символа начиная справа (т.к. ), а затем воспользуемся таблицей соответствия и заменим каждую группу на новую цифру:
Таблицу соответствия мы научились строить в п.1.
0 | 0 |
1 | 1 |
10 | 2 |
11 | 3 |
100 | 4 |
101 | 5 |
110 | 6 |
111 | 7 |
Т.е.
Пример 6. Переведем двоичное 1100001111010110 число в шестнадцатеричную систему.
0 | 0 |
1 | 1 |
10 | 2 |
11 | 3 |
100 | 4 |
101 | 5 |
110 | 6 |
111 | 7 |
1000 | 8 |
1001 | 9 |
1010 | A |
1011 | B |
1100 | C |
1101 | D |
1110 | E |
1111 | F |
5.Перевод из системы с основанием «степень двойки» (4, 8, 16 и т.д.) в двоичную.
Этот перевод аналогичен предыдущему, выполненному в обратную сторону: каждую цифру мы заменяем группой цифр в двоичной системе из таблицы соответствия.
Пример 7. Переведем шестнадцатеричное число С3A6 в двоичную систему счисления.
Для этого каждую цифру числа заменим группой из 4 цифр (т.к. ) из таблицы соответствия, дополнив при необходимости группу нулями вначале:
Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)
Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.
ege-study.ru
Онлайн калькулятор систем счисления с решением онлайн
При помощи данного калькулятора вы можете переводить целые и дробные числа из одной системы счисления в другую и получить подробное решение. Допустимо использовать основание системы счисление от 2-чной до 36-чной.
Примеры перевода чисел в различные системы счисления
Пример №1Переведем число 12 из десятичной в двоичную систему счисления
1210 = 11002
Переведем число 1210 в 2-ичную систему счисления, при помощи последовательного деления на 2, до тех пор, пока неполное частное не будет равно нулю. В результате будет получено число из остатков деления записанное справа налево.12 | : | 2 | = | 6 | остаток: 0 |
6 | : | 2 | = | 3 | остаток: 0 |
3 | : | 2 | = | 1 | остаток: 1 |
1 | : | 2 | = | 0 | остаток: 1 |
1210 = 11002 Перейти в калькулятор систем счисления
Пример №2
Переведем число 12.3 из десятичной в двоичную систему счисления
12.310 = 1100.0100110011001100110011001100112
Переведем целую часть 12 числа 12.310 в 2-ичную систему счисления, при помощи последовательного деления на 2, до тех пор, пока неполное частное не будет равно нулю. В результате будет получено число из остатков деления записанное справа налево.12 | : | 2 | = | 6 | остаток: 0 |
6 | : | 2 | = | 3 | остаток: 0 |
3 | : | 2 | = | 1 | остаток: 1 |
1 | : | 2 | = | 0 | остаток: 1 |
1210 = 11002
Переведем дробную часть 0.3 числа 12.310 в 2-ичную систему счисления, при помощи последовательного умножения на 2, до тех пор, пока в дробной части произведения не получиться ноль или не будет достигнуто необходимое количество знаков после запятой. Если в результате умножения целая часть не равна нулю, тогда необходимо заменить значение целой части на ноль. В результате будет получено число из целых частей произведений, записанное слева направо.
0.3 | · | 2 | = | 0.6 |
0.6 | · | 2 | = | 1.2 |
0.2 | · | 2 | = | 0.4 |
0.4 | · | 2 | = | 0.8 |
0.8 | · | 2 | = | 1.6 |
0.6 | · | 2 | = | 1.2 |
0.2 | · | 2 | = | 0.4 |
0.4 | · | 2 | = | 0.8 |
0.8 | · | 2 | = | 1.6 |
0.6 | · | 2 | = | 1.2 |
0.2 | · | 2 | = | 0.4 |
0.4 | · | 2 | = | 0.8 |
0.8 | · | 2 | = | 1.6 |
0.6 | · | 2 | = | 1.2 |
0.2 | · | 2 | = | 0.4 |
0.4 | · | 2 | = | 0.8 |
0.8 | · | 2 | = | 1.6 |
0.6 | · | 2 | = | 1.2 |
0.2 | · | 2 | = | 0.4 |
0.4 | · | 2 | = | 0.8 |
0.8 | · | 2 | = | 1.6 |
0.6 | · | 2 | = | 1.2 |
0.2 | · | 2 | = | 0.4 |
0.4 | · | 2 | = | 0.8 |
0.8 | · | 2 | = | 1.6 |
0.6 | · | 2 | = | 1.2 |
0.2 | · | 2 | = | 0.4 |
0.4 | · | 2 | = | 0.8 |
0.8 | · | 2 | = | 1.6 |
0.6 | · | 2 | = | 1.2 |
0.310 = 0.0100110011001100110011001100112
12.310 = 1100.0100110011001100110011001100112 Перейти в калькулятор систем счисления
Пример №3
Переведем число 10011 из двоичной системы в десятичную систему счисления
100112 = 1910
Переведем число 100112 в десятичную систему счисления, для этого сначала запишем позицию каждой цифры в числе с права налево, начиная с нуляПозиция в числе | 4 | 3 | 2 | 1 | 0 |
Число | 1 | 0 | 0 | 1 | 1 |
Каждая позиция цифры будет степенью числа 2, так как система счисления 2-ичная. Необходимо последовательно умножить каждое число 100112 на 2 в степени соответствующей позиции числа и затем сложить с последующим произведением следующего числа в степени соответствующей его позиции.
100112 = 1 ⋅ 24 + 0 ⋅ 23 + 0 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20 = 1910
Перейти в калькулятор систем счисленияПример №4
Переведем число 11.101 из двоичной системы в десятичную систему счисления
11.1012 = 3.62510
Переведем число 11.1012 в десятичную систему счисления, для этого сначала запишем позицию каждой цифры в числеПозиция в числе | 1 | 0 | -1 | -2 | -3 |
Число | 1 | 1 | 1 | 0 | 1 |
Каждая позиция цифры будет степенью числа 2, так как система счисления 2-ичная. Необходимо последовательно умножить каждое число 11.1012 на 2 в степени соответствующей позиции числа и затем сложить с последующим произведением следующего числа в степени соответствующей его позиции.
11.1012 = 1 ⋅ 21 + 1 ⋅ 20 + 1 ⋅ 2-1 + 0 ⋅ 2-2 + 1 ⋅ 2-3 = 3.62510
Перейти в калькулятор систем счисленияПример №5
Переведем число 1583 из десятичной системы в шестнадцатеричную систему счисления
158310 = 62F16
Переведем число 158310 в 16-ичную систему счисления, при помощи последовательного деления на 16, до тех пор, пока неполное частное не будет равно нулю. В результате будет получено число из остатков деления записанное справа налево.1583 | : | 16 | = | 98 | остаток: 15, 15 = F |
98 | : | 16 | = | 6 | остаток: 2 |
6 | : | 16 | = | 0 | остаток: 6 |
158310 = 62F16 Перейти в калькулятор систем счисления
Пример №6
Переведем число 1583.56 из десятичной системы в шестнадцатеричную систему счисления
1583.5610 = 62F.8F5C28F5C28F5C28F5C28F5C28F5C216
Переведем целую часть 1583 числа 1583.5610 в 16-ичную систему счисления, при помощи последовательного деления на 16, до тех пор, пока неполное частное не будет равно нулю. В результате будет получено число из остатков деления записанное справа налево.1583 | : | 16 | = | 98 | остаток: 15, 15 = F |
98 | : | 16 | = | 6 | остаток: 2 |
6 | : | 16 | = | 0 | остаток: 6 |
158310 = 62F16
Переведем дробную часть 0.56 числа 1583.5610 в 16-ичную систему счисления, при помощи последовательного умножения на 16, до тех пор, пока в дробной части произведения не получиться ноль или не будет достигнуто необходимое количество знаков после запятой. Если в результате умножения целая часть не равна нулю, тогда необходимо заменить значение целой части на ноль. В результате будет получено число из целых частей произведений, записанное слева направо.
0.56 | · | 16 | = | 8.96 |
0.96 | · | 16 | = | 15.36, 15 = F |
0.36 | · | 16 | = | 5.76 |
0.76 | · | 16 | = | 12.16, 12 = C |
0.16 | · | 16 | = | 2.56 |
0.56 | · | 16 | = | 8.96 |
0.96 | · | 16 | = | 15.36, 15 = F |
0.36 | · | 16 | = | 5.76 |
0.76 | · | 16 | = | 12.16, 12 = C |
0.16 | · | 16 | = | 2.56 |
0.56 | · | 16 | = | 8.96 |
0.96 | · | 16 | = | 15.36, 15 = F |
0.36 | · | 16 | = | 5.76 |
0.76 | · | 16 | = | 12.16, 12 = C |
0.16 | · | 16 | = | 2.56 |
0.56 | · | 16 | = | 8.96 |
0.96 | · | 16 | = | 15.36, 15 = F |
0.36 | · | 16 | = | 5.76 |
0.76 | · | 16 | = | 12.16, 12 = C |
0.16 | · | 16 | = | 2.56 |
0.56 | · | 16 | = | 8.96 |
0.96 | · | 16 | = | 15.36, 15 = F |
0.36 | · | 16 | = | 5.76 |
0.76 | · | 16 | = | 12.16, 12 = C |
0.16 | · | 16 | = | 2.56 |
0.56 | · | 16 | = | 8.96 |
0.96 | · | 16 | = | 15.36, 15 = F |
0.36 | · | 16 | = | 5.76 |
0.76 | · | 16 | = | 12.16, 12 = C |
0.16 | · | 16 | = | 2.56 |
0.5610 = 0.8F5C28F5C28F5C28F5C28F5C28F5C216
1583.5610 = 62F.8F5C28F5C28F5C28F5C28F5C28F5C216 Перейти в калькулятор систем счисления
Пример №7
Переведем число A12DCF из шестнадцатеричной системы в десятичную систему счисления
A12DCF16 = 1056302310
Переведем число A12DCF16 в десятичную систему счисления, для этого сначала запишем позицию каждой цифры в числе с права налево, начиная с нуляПозиция в числе | 5 | 4 | 3 | 2 | 1 | 0 |
Число | A | 1 | 2 | D | C | F |
Каждая позиция цифры будет степенью числа 16, так как система счисления 16-ичная. Необходимо последовательно умножить каждое число A12DCF16 на 16 в степени соответствующей позиции числа и затем сложить с последующим произведением следующего числа в степени соответствующей его позиции.
A16 = 1010
D16 = 1310
C16 = 1210
F16 = 1510
A12DCF16 = 10 ⋅ 165 + 1 ⋅ 164 + 2 ⋅ 163 + 13 ⋅ 162 + 12 ⋅ 161 + 15 ⋅ 160 = 1056302310
Перейти в калькулятор систем счисленияПример №8
Переведем число A12DCF.12A из шестнадцатеричной системы в десятичную систему счисления
A12DCF.12A16 = 10563023.0727539062510
Переведем число A12DCF.12A16 в десятичную систему счисления, для этого сначала запишем позицию каждой цифры в числеПозиция в числе | 5 | 4 | 3 | 2 | 1 | 0 | -1 | -2 | -3 |
Число | A | 1 | 2 | D | C | F | 1 | 2 | A |
Каждая позиция цифры будет степенью числа 16, так как система счисления 16-ичная. Необходимо последовательно умножить каждое число A12DCF.12A16 на 16 в степени соответствующей позиции числа и затем сложить с последующим произведением следующего числа в степени соответствующей его позиции.
A16 = 1010
D16 = 1310
C16 = 1210
F16 = 1510
A12DCF.12A16 = 10 ⋅ 165 + 1 ⋅ 164 + 2 ⋅ 163 + 13 ⋅ 162 + 12 ⋅ 161 + 15 ⋅ 160 + 1 ⋅ 16-1 + 2 ⋅ 16-2 + 10 ⋅ 16-3 = 10563023.0727539062510
Перейти в калькулятор систем счисленияПример №9
Переведем число 1010100011 из двоичной системы в шестнадцатеричную систему счисления
10101000112 = 2A316
Переведем число 10101000112 в десятичную систему счисления, для этого сначала запишем позицию каждой цифры в числе с права налево, начиная с нуляПозиция в числе | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Число | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
Каждая позиция цифры будет степенью числа 2, так как система счисления 2-ичная. Необходимо последовательно умножить каждое число 10101000112 на 2 в степени соответствующей позиции числа и затем сложить с последующим произведением следующего числа в степени соответствующей его позиции.
10101000112 = 1 ⋅ 29 + 0 ⋅ 28 + 1 ⋅ 27 + 0 ⋅ 26 + 1 ⋅ 25 + 0 ⋅ 24 + 0 ⋅ 23 + 0 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20 = 67510
Переведем число 67510 в 16-ичную систему счисления, при помощи последовательного деления на 16, до тех пор, пока неполное частное не будет равно нулю. В результате будет получено число из остатков деления записанное справа налево.675 | : | 16 | = | 42 | остаток: 3 |
42 | : | 16 | = | 2 | остаток: 10, 10 = A |
2 | : | 16 | = | 0 | остаток: 2 |
67510 = 2A316
matematika-club.ru
Перевод дробных чисел из одной системы счисления в другую
После того, как я сделал несколько калькуляторов для перевода между разными системами счисления — вот список от первой до последней версии, от самого простого к сложному: Перевод числа в другие системы счисления, Перевод из десятичной системы счисления, Перевод из одной системы счисления в другую — в комментариях стали периодически спрашивать — а что же, мол, дробные числа, как же их переводить? И когда спросили больше трех раз, я таки решил изучить этот вопрос.
Результатом стал калькулятор, который вы видите ниже, он умеет переводить и дробные числа в том числе. Как водится, для любознательных под калькулятором немного теории.
Перевод дробных чисел из одной системы счисления в другую
Основание системы счисления исходного числа
Основание системы счисления переведенного числа
Точность вычисленияЗнаков после запятой: 8
Переведенное число
Детали перевода
Исходное число в десятичной системе счисления
Переведенное число в десятичной системе счисления
Погрешность перевода (в десятичном выражении)
Максимальная погрешность перевода (в десятичном выражении)
save Сохранить share Поделиться extension Виджет
Теперь теория. Я, честно говоря, думал, что вопрос довольно сложный, но при ближайшем рассмотрении все оказалось проще простого. Надо было только держать в голове тот факт, что речь идет о позиционных системах счисления.
В чем тут суть? Рассмотрим на примере десятичного числа 6.125. Это дробное число в десятичной системе счисления представляется так:
Все просто, не так ли? Та же самая простота сохраняется и при записи дробного числа в любой другой системе счисления. Возьмем, например, горячо любимую каждым программистом двоичную систему и число, например, 110.001. Эта запись есть не что иное как
Да-да, число для примера было выбрано не просто так. То есть, 110.001 в двоичной системе есть 6.125 в десятичной. Принцип, я думаю, ясен.
Есть только одно но — все-таки из-за того, что здесь участвую дроби с разными знаменателями, не всегда одно и тоже число можно одинаково точно выразить в разных системах счисления. Что я имею в виду?
Возьмем, например, число . Отлично смотрится в десятичной системе счисления. Но вот если попробовать получить запись этого числа в двоичной системе счисления — будут проблемы. Попробуем, пока не устанем
Продолжать можно еще довольно долго, но уже сейчас видно, что 0.8 в десятичной системе это 0.11001100…(дальше очень много цифр) в двоичной. Если честно, то это периодическое число с перидом 1100, так что мы никогда не сможем выразить его точно в двоичной системе счисления. 110011001100… будет продолжаться до бесконечности.
Поэтому перевод дробного числа из одной системы счисления в другую чаще всего дает погрешность. Погрешность эта зависит от того, сколько разрядов мы используем для записи дробной части переведенного числа. Возьмем пример с числом 0.8 и используем для записи его двоичного представления шесть разрядов после запятой — 0.110011. Полученное число вовсе не 0.8, а 0.796875, разница при этом составляет 0.003125. Это и есть наша погрешность перевода десятичного числа 0.8 в двоичный вид при использовании шести разрядов после запятой.
Вес крайнего правого разряда (самого младшего разряда) называется разрешением (resolution) или точностью (precision), и определяет наименьшее неравное нулю число, которое может быть представлено данным числом разрядов. Для нашего примера это . При этом максимально возможная погрешность представления числа, как нетрудно сообразить, не превышает половины этого веса, или 0.0078125. Так что для 0.8 мы имеем еще и не самую плохую погрешность.
Вот, собственно, и все.
planetcalc.ru
Перевод систем счисления — онлайн конвертер
Чтобы перевести число из одной системы счисления в другую, воспользуйтесь нашим онлайн конвертером:
Онлайн конвертер
Просто введите целое число и выберете системы счисления.
Для примера переведём число 123 из десятеричной системы в другие:
- в двоичную: 12310 = 11110112
- в восьмеричную: 12310 = 1738
- в шестнадцатеричную: 12310 = 7B16
- в троичную: 12310 = 111203
- в четверичную: 12310 = 13234
- в пятиричную: 12310 = 4435
- в шестиричную: 12310 = 3236
- в семиричную: 12310 = 2347
- в девятиричную: 12310 = 1469
- в одиннадцатиричную: 12310 = 10211
- в двенадцатиричную: 12310 = A312
- в тринадцатиричную: 12310 = 9613
- в четырнадцатиричную: 12310 = 8B14
- в пятнадцатиричную: 12310 = 8315
- в двадцатеричную: 12310 = 6320
Какие бывают системы счисления
Наиболее часто используемыми системами счисления являются:
- двоичная (2) – все числа записываются лишь посредством двух символов: 0 и 1. Используется в дискретной математике, информатике и программировании.
- троичная (3) – числа записываются посредством трёх символов: 0, 1 и 2. Используется в цифровой электронике.
- восьмеричная (8) – числа записываются посредством цифр от 0 до 7. Используется в областях связных с цифровыми устройствами, так как восьмеричные числа легко переводятся в двоичные и обратно.
- десятеричная (10) – числа записываются посредством цифр от 0 до 9. Используется повсеместно.
- двенадцатеричная (12) – числа записываются посредством цифр от 0 до 9 и буквами A и B. Cчёт дюжинами…
- шестнадцатеричная (16) – числа записываются посредством цифр от 0 до 9 и буквами A, B, C, D, E, F. Широко используется в программировании и информатике.
- двадцатеричная (20) – числа записываются посредством цифр от 0 до 9 и буквами A, B, C, D, E, F, G, H, I (или J), J( или K). Исторически используется во многих языках, в частности в языке йоруба, у тлинкитов, в системе записи чисел майя, некоторых азиатских и кавказских языках.
См. также
poschitat.online